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SUMMARY

Equatlons are derived for computing the form of an oblique shock
wave as it passes through supersonic regions in which statlic pressure,
stagnation pressure, stagnation temperature, or combinations of these
are continuously variable. Rigorous portions of the analysis are limited
to shock strengths for which the flow downstream of the shock remains
supersonic. When no downstream waves other than those generated by
the interaction process are present, the rate of change of shock angle

\ . with upstream Mach number is found to be a function only of the local
» " shock angle and upstream Mach number; hence, the propagation through
a nonuniform region depends only on the initial shock strength and Mach
, ‘ number. A procedure is described for computing the supersonic portion
- * _ of the flow field downstream of the shock wave.

For the special cases of supersonic shear flow and Prandtl-Méyer
flow, charts of the shock angle as & function of upstream Mach number
are~presented sO that the passage of a shock wave through these types
of nonuniform regions can be easily traced. For a prescribed initial
shock strength and initial Mach number, a minimum upstream Mach number
is found below which no physically realistic solution can be obtained
with the equations for simple propagation. " This result serves as a
sufficient condition for the avoidance of separated flow, reversed
flow, or other upstream effects. An example is computed of the propaga-
‘tion of a shock wave through a wake-type supersonic shear profile and
the flow field downstream of -the shock is constructed.

INTRODUCTION

The most frequently discussed example of the propagation of a
shock wave into a nonuniform flow region appears, at present, to be
the shock-wave boundary-layer interaction problem. Although much
theoretical and experimental research has been devoted to this problem,
it is still unsolved in the sense that no method exists whereby the
effect of a shock of prescribed strength on a boundary layer with




2 NACA TN 2725

prescribed profile can be predicted. The difficulty in formulating a
theoretical approach can be attributed chiefly to the fact that the
flow upstream of the shock is not independent of the presence of the
shock. TIf the subsonic portion of the boundary layer were removed
(by continuous suction, for example), it might be expected that this
difficulty would be eliminated. Circumstances frequently arise, how-
‘ever, for which even this expectation is not fulfilled. It was shown
qualitatively in reference 1, for example, that the presence of a ‘
supersonic wake upstream of a blunt body requires modification of the
upstream flow in order that physically realistic pressure gradients
can be obtained downstream of the detached shock.: The fact that the
flow upstream of the shock is completely supersonic does not, therefore,
guarantee that the upstream flow will be uninfluenced by the presence
of the shock.

In order to formulate criteria for determining whether or not the
flow upstream of a shock is independent of the presence of the shock,
it is first necessary to analyze the propagation of shock waves through
regions in which upstream flow conditions are variable over a wide
range. Such an analysis was carried out for weak waves and for the
particular case of a supersonic shear layer in reference 2.

In the present report, the propagation of oblique shock waves of
arbitrary strength through supersonic regions in which static pressure,
stagnation pressure, stagnation temperature, or combinations of these
are variable over wide ranges is considered. In addition to providing
eriteria for the avoidance of upstream effects of shock waves, the
analysis provides a method for tracing shock waves through jets or wakes
of known profile or through other types of flow with large nonuniformi-
ties. An analysis of the propagation of weak waves in general nonuniform
regions is also given, and a procedure is discussed for constructing
the supersonic portion of the flow field downstream of shock waves or
weak waves. This investigation was conducted at the NACA Lewis

laboratory.

ANATYSTS
General Equations

The interaction of a shock wave with a nonuniform supersonic stream
ig first discussed for the most general conditions feasible. The result-
ing equations are then simplified for several special types of flow.
Symbols used are defined in the appendix.

For the most general case considered, the following assumptions
are made:

(1) In the vicinity of the interaction region, effects of viscosity
turbulence are negligible. This assumption permits use of nonviscous
shock and flow equations.

2527
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(2) The flow is everywhere supersonic and, consequently, changes
‘ in pressure and flow direction take place only across shock waves or
» characteristic lines (Mach waves).

(3) The flow field can be divided into stream tubes of small thick-
ness. Stagnation temperature T and ratio of specific heats 7y are
constant in each stream tube but may change across the streamlines that
bound each stream tube. (If the static temperature, and consequently
T, changes appreciably across the shock wave, an average value of v
can be used for each stream tube with slight additional complication.)

- L2se

]
(4) Stagnation pressure remains constant in each stream tube except
when that stream tube passes through the shock wave,

(5) Fluld properties upstream of the shock wave contain no large
discontinuities. (If this condition is not imposed, the numerical work
soon becomes prohibitively lengthy. Evaluation of the exact solution
at the point of impingement of a shock wave on a contact surface that
separates fluids whose properties differ by large amounts is discussed
in references 3 and 4.)

With the preceding assumptions, the wave and streamline pattern
near a point on the shock wave in the nonuniform flow field can be
represented as in sketch 1. Lines Oa and §§ are incident waves or
characteristics upstream of the shock; line O0Og is an incident wave or
characteristic in the downstream field; and Of is a reflected wave or
characteristic. Static pressure and flow direction may change across
) \ ‘ v any characteristic or across

d the shock wave; stagnation
pressure can change across
any streamline or across
the shock wave; and stagna-
tion temperature and speci-
fic heat can change across
e any streamline. Assump-
tions (3) and (5) imply that
all waves except the shock
wave are sufficiently weak
80 that the relation between
flow deflection and pressure
change across the wave satis-
fies the weak-wave equation:

® ‘ Shock S P ) I\/Mz..]_
, & ~— — Characteristic ‘ ‘
—>— gtreamline where primes represent down-

stream values and unprimed
symbols denote upstream

Sketch 1
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values. The plus and minus signs are used, respectively, for waves
whose slope is positive or negative in sketch 1. All waves except the
shock wave are inclined at the local Mach angle relative to the local
flow direction.

The following relations between values upstream of a shock (unprimed)
and values downstream of the shock (primed) are required for the analysis
(see reference 5):

- o %Y a2eso0 Y -1
5 = £1(M,7,0) = ] MZsince oo (2)

Mzsin ® cos @ - cot @ (3)

A-AE £5(M,7,0) = tan™t _
1 + M2 (1*2-_1 - sinz(P)

1

12

(4)

f3 (M) T,9) =

= 1=

2.1

where

o (r+ 1)2M*sin% - 4(MZsinfo - 1) (yM2sin®e + 1)

ri2sinZe - (v - 1)] [(r - 1)MBsin20 + 2]

(5)

Ml

The equations relating the quantities in each of the several
regions of sketch 1 are derived with reference to the numbering shown
' in sketch 2, which is
an expanded version of
the vicinity of point O
in sketch 1. The waves
and the streamline
separate the flow near
point O into eight
regions, in each of
which all fluid proper-
ties are constant. Con-
ditions in the upstream
regions 1, 2, 3, and 8
are known; and the inci-
dent shock angle ¢8 is

known. From the shock
equations, conditions in
region 7 are determined

by ®g» MB’ and Tg-
The unknowns are ¢3

Sketch 2

2527
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and conditions in regions 4, 5, and 6. Since pressuré and flow angle
are constant across streamlines, the following relations exist among
the pressures and the‘flow angles:

A, =Mg ' ‘ : (8)

——— S v — e—

Py _P5 Pg P7 Pg * NS

Substitution from equations (1), (2), (3), (4), and (6) into equation (7)

" yields

2 ' : . .
,fl(MS’Y3’°3) = I:l - ,\l;slsc;l (y - lsﬂ E- + 5 (Mg,79,%5) (X = X7)]f1(Me:T3:°a) i_g (e}
6 . -

But from equation (3)

A, =g+ £o(Ma,15,0z) (9)

Ay = hg + £o(Mg,1g,P) - (10)

Hence, equation.(8) becomes

. _ &
- £y (M575,05) = [—1 - 'LGZM’G‘— (- X+ fz(“sﬂs"’s)] {1 + 25(M3,7g, %2 -~ g - fz(“eﬂa"’s]} 21 (Mg,7g,9) ;f (1)

My -‘lv

A1l quantitiés in equation (ll) are known except ¢3, MG’ and XS‘ %
" waves of type 6§ in sketch 2 can be eliminated from the problem, the

solution is greatly simplified, since then Xé = X7 and M6 = M7; and

the only remaining unknbwn is the transmitted-shock angle ®z. Condi-

tions'under which waves of type BE .can be neglected can be ascertained
with the aid of the following sketches:
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Nonuniform flow Nonuniform flow

:

Sketch 3(a). Sketch 3(b).

In sketch 3(a) waves of type Og are generated by the object that
produées the shock wave and reach the shock before it passes through
the nonuniform flow region. TFor this case, therefore, this type of
incident wave is obviously not negligible. In sketch S(b), on the other
hand, waves of type Og that originate on, or are reflected from, the
object reach the shock only after it has passed through the nonuniform
region. There remains the possibility, however, (as illustrated in
sketch 3(b)) that waves reflected within the nonuniform field itself
will approach and appreciably influence the shock form before the shock
leaves the nonuniform flow region. Conditions for which these waves
are negligible can be determined by an analysis of the strength of the
wave of type Og that separates regions 2 and 3 in sketch S(b) relative
to the strength of the wave of type Of that separates regions 1 and 2.
Thus, in sketch S(b), since py = Pz, Pg5 = P7> X3 = X4, and Xl = hg,

2
use of equation (1) yields (with M f(M))
2
‘ Me -1

g - M) [E) + £(s) - £005) £0) O - A)]= (g = M) [£0u) - 2(5)]
from which is obtained

Az - ko £(M;) - £(Mg) Af

A, - AT oE(My) + £(Mg) - £(My) £(Mp) (g - Aq) NV

L5 ¥
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Consequently, waves of type 6@, if they arise from internal reflection
in the region of nonuniform flow, can be neglected without serious error
if fAM<< 2, where AM can be interpreted as the strength of the strong-
est wave of type ‘OF. Since the strength of the Of waves is determined
by the magnitude of the discontinuities upstream of the shock wave, this
criterion, in effect, specifies the magnitude of the upstream discontinu-
ities that can be tolerated if equation (11) is to be simplified. It
will be assumed throughout the remainder of the report that the upstream

' flow satisfies this requirement, and that consequently Mg and XB can

be set equal to My and X7, respectively, if no waves other than those

resulting from shock;gropagation are present. The modifications required
when waves of type Og other than those resulting from internal reflec-
tion are present are considered in the section DISCUSSION AND APPLICATION.

If A =X, and Mg =M, equations (8) or (11) become

Y

£ (My575505) = {1 - 5 (Mg57g:9g) 1}3 - Mg+ £ {M075502) - fz(MB,vs,(ps)]} £, (Mgs7g:05) ;2— (12)

Since changes in flow variables from one stream tube to the next
have been assumed small, functions of Mgz, @z, and 713 differ only

slightly from the same functions of MB’ Pg> and Yg* Consequently, let

£, (Mg, 05,75) = £, (Mg,®g,7g) + afy (0 =1,2,3) | (13)
and let

bz = Pg + dp
(14) -

A

ll

z = Ag + dh
Equation (12) then becomes
Pg i
fo 4 df, = ——— fq |1 - £2(d\ + 4f
d.
=1 -2 [p) - £ rg(an + dfy)] (15)

P

where the differentials correspond to changes in quantitiés upstrean
of the shock wave from one stream tube to the next in the direction of
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propagation of the shock wave. If only first-order differential terms
are retained, equation (15) becomes

arf
1 dp ‘
== s(dh+ afp) - ~ (16)

1

But

> (17)

dp = =— dM J

Hence, equation (18) becomes

1 (afl of dy) (afz ofy 4y ax) 1 dp
=\l + = =]+ f3 — =+ = |+ ==
de fy\oM oy aM M Oy aM dM/ p M
— = - 3 3 (18)
™ 1% ,
fl B(P 5 3¢

A1l guantities in the right member of equation (18) depend only
on conditions upstream of the shock wave; hence, if the variations of
Y, A\, and p with upstream Mach number are specified (as they will be
if upstream conditions are known), then the rate of change of shock
angle with upstream Mach number is a function only of @ and M. For
any initial shock angle, and for arbitrary (but continuous) upstream
Mach number distribution, equation (18) can therefore be integrated to
~ obtain the form of the shock wave in regions of nonuniform supersonic
flow. For discontinuous, but small, changes in upstream conditions,
equation (18) must be evaluated in a step-by-step manner from one
discontinuity to the next. The validity of equation (18) is limited.
to shock waves for which the flow downstream is supersonic and to
segments of .the shock wave that are free of interaction with downstream -
incident waves other than those resulting from the propagation process.

_ The partial derivatives required in equation (18) as evaluated from
equations (2) and (3) are:

2527
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196 4yM sine (19)
f1 oM 2yM2sine - (y - 1) :
1 Bfl f 47M2sin ® cos @ : | (20)
£1 00 2yM2sine - (v - 1) |
13 2(MPsine - 1) (21)
f =

L (r+1) [eneeinfe - (v - 1)] |
- Of (v + LM cot @
M = 2 (22)
‘ [;,+ M2 (Y ; 1 sinzw)] + cotZe (MZsinZ - 1)2
3¢ 1 +(Y ; 1 - 2 sin2¢) M2 + (l;g—i -7 sin2¢) M4sinz¢
5 ,
T - (23)
Sinz(p{(:l + M2 (I_;;_l_ - sin2¢)] + cotZe (MZsinZ - 1) 2} |
2 ' '
df, - % cot ¢ (MCsinp - 1) |
- (24)

oy 2
E_+ M2 (I_g_i - sinzw)] + cot?e (M?sine - 1)2

Special Cases

Supersonic shear flow. - If flow angle, static pressure, and ratio
of specific heats are constant immediately upstream of the shock, equa-
tion (18) reduces to

1 ofy 3,
ae F]-: M * T3 oM ,
o™ ] of o, = £4(M,9) (25)

= + f
£1 09 93¢

A contour plot of dp/dM as function of ¢ and M is shown in
figure 1. Integral curves of figure 1 are presented in figure 2. The
construction of these integral curves by an isocline method is aided
by the fact that the curve of Mach angle against M (M sin¢ = 1) is
itself an integral curve of equation (25). This fact can be deduced
from equation (25), which reduces for this case to
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(39) _ _tan @ 1 , (26) )

which is exactly the slope of the curve M sin ® = 1. Consequently,
the slope of all integral curves at their intersection with an
fy = constant contour is the same as the slope of the M sin ¢ = 1

curve at its interseetion with that contour.

The integral curves of figure 2 yield the variation of shock angle
with upstream Mach number when the reflected wave from each differential
interface is taken into account. For comparison, figure 2 also contains
curves obtained with the assumption that these reflected waves are
negligible and, hence, that the pressure ratio across the shock (or
M sin ¢ (see equation (2)) remains constant as the shock passes through
the shear region. Since the slope of any M sin ¢ = constant .curve is
d®/aM = - (tan @)/M, the curve £,(M,®) = - (tan ®)/M (fig. 2) is the

locus of points for which the slope of the integral curves is equal to
the slope of the constant-pressure-ratio curves. Comparison of the
constant-pressure-ratio curves with the integral curves in figure 2
shows that the pressure ratio across the shock decreases as upstream -
Mach number decreases in the region to the left of the curve ’
£, (M9) = - (tan ¢)/M. To the right of this curve, pressure ratio o
increases as upstream Mach number decreases. The intersection of this -
curve with the Mach angle curve at M = 1.41 agrees with a result '
obtained in reference 2 for the interaction of weak waves with parallel
supersonic shear layers. For a weak incident wave entering the region
of decreasing Mach number, it was found that for M = 1/5 no reflected
wave occured. The curve f£,(M,®) = - (tan ®)/M in figure 2 thus rep-
resents a generalization of this result to the case of waves of arbitrary
strength. .
For fairly weak shocks, the assumption that the pressure ratio
across the shock remains constant through the shear region appears to
be an adequate approximation. For stronger shocks, however, the pres-
sure gradient downstream of the shock can become quite large, and the
. actual shock angles may differ considerably from those obtained with
the constant-pressure-ratio assumption.

The integral curves of figure 2 cannot be constructed beyond the
M' = 1 curve, since the reflected-wave concept used to derive these
curves is meaningless if the downstream flow is subsonic. For this
region (@s < q)<:90°), however, it should be approximately valid in
certain cases to assume that the pressure immediately downstream of
the shock is constant along the shock, particularly if the flow down-
stream of the shock is expected to be almost parallel. A large.pressure
‘gradient normal to the subsonic streamlines would be inconsistent with

..L2s2

i
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the expected nearly parallel flow. Consequently, in order to compute
the form of the shock for ¢ > ®,, the 1ntegrdl curves of figure 2 can
probably be extended to ¢ = 90° along curves of constant- pressure
ratio with no significant error. :

When such extensions are made, it is seen from figure 2 that for

- any initial Mach number and shock angle there exists a minimum upstream

Mach number below which no shock solution is obtained. If the Mach

number profile of the shear region is such that the minimum Mach number

is less than that for which a shock of specified initial strength can

be traced through the region, some readjustment of the upstream flow

appears to be required to obtain a solution that is physically realistic.

For example, the situation shown in sketch 4 may be considered, wherein
a shock of initial angle
Py = 28. 6° and initial

Mach number of 3.0 enters
a shear region in which
the minimum Mach number
is 1.2. From figure 2, the
incident shock is found to
become normal at M = 1.386.
If the shock remained nor--
mal from a to b, as
indicated by the dotted .
extension of the shock,
then the pressure ratio at
b would be 1.52 as com-
fared with the pressure
ratio at a of 2.0. Since
| | the normal shock implies ’
I l initially parallel subsonic
: ; | _ downstream flow, it seems
1.007 1.38 T30 - ‘ unreasonable to expect that
' _ - a pressure gradient normal
1.20 ' ' to the streamlines such as
Sketch 4 : " required in sketch 4 will
: be established.

Upstream

Mach number Shock wave

(R

lo'

A situation similar to that shown in sketch 4 was discussed in
reference 1, where the modification required in the shock form when a
shear layer occurs ahead of a blunt body was considered. It was argued
that the pressure near the base or center line of the shear layer could
be increased to a magnitude compatible with that outside the shear
layer only if the stagnation point moved upstream to the vieinity of
the shock wave. Hence, a separated-flow region was required shead of
the body to provide a mechanism for establishing pressure equilibrium
in subsonic portions of the downstream flow. Although the nature of
the modification required in the present case is less evident, the
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formation of a separated-flow region with a consequent lambda shock
outside of the shear layer appears to be the most likely possibility.
In any event, the curves of figure 2 provide a criterion for determining
whether simple propagation of a shock wave through the shear region

can take place. If the shock can be traced through the shear region
by means of figure 2, then the physical shock should correspond to that
calculated. If, on the other hand, the shock cannot be traced through
the shear layer, then a more complicated flow pattern will be obtained
which may or may not involve reversed flow and flow separation.® This
criterion yields no information, of course, on the magnitude of the
separation that may result if simple propagation is impossible.

Nonuniform isentropic flow. - If the stagnation pressure upstream
of the shock is constant, then from the isentropic flow relation
r

- r-1
p=P(1+f-£—iM2)

there is obtained
- -1
£@=—YM (l+-———Y le) (27)
p dM 2

If y is also constant, equation (18) Dbecomes

1 9 (afz dx) r -1 ,\1
E’E&T‘Lf?) Bﬁ"+m—7‘M 1+—5—M

ap
- L ofy df (28)
. E&TJ'%BT

Since the variation of A with M depends, in general, omn the structure
of the flow upstream of the shock, the profile of M and N must, in
general, be specified to obtain the shock form from equation (28). For
some types of flow, however, such as Prandtl-Meyer flow, the quantity
d)/dM is a prescribed function of M so that equation (28) can be
represented on a @ - M plot as for shear flow. Thus, for Prandtl-
Meyer flow, since

8gince spearated-flow regions unsupported by solid boundaries are
not commonly observed experimentally, it may be helpful to point out
that such regions can be maintained in equilibrium relative to the main
stream by the high downstream pressure that is established in the sepa-
rated region. The branched-shock configuration that results from flow
separation can produce the required equilibrium conditions.

2527
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+ 1 T -1
4% = . r+ = -1 2_ R
EN -1 tan \/ 1 (M° - 1) + sin™ F + C
there is obtained
a_f Me - 1 (29)‘

2 ' -1
1 Oofy of5 Me - 1 y -1 2
— - + ’ :
W ffs S ™t T fz J\L+ "M

de -

— - =f M(p

w e oo st
£, o9 '3 30 | £ 0 339 N (30)

where the plus sign is used when dl/dM» is positive and the minus
sign when dk/dM is negative.

Positive values of dl{dM correspond to interactions such as
those shown in sketches 5(a) and 5(b); negative values ocecur for inter-
actions such as those shown in sketchés 5(c) and 5(d) and arise less

frequently in practice than positive values.

The compressive, or reversed, Prandtl-Meyer flow shown in
sketches 5(b) and 5(d) is, of course, described by equation (29) only
in regions in which the flow can be represented by a sequence of weak
waves. When the weak waves form an envelope shock of sufficient
strength to produce notable entropy increases, the flow angle and Mach

‘number are no longer related by the Prandtl-Meyer equation.

The first term of the right member of equation (30) is the value
of de/dM for comstant p, X, and y (equation (25)); the second
term 1s the effect of static pressure and flow angle changes in Prandtl-
Meyer flow. e

A contour plot of d®/dM = f£5(M,9) for Prandtl-Meyer flow

is shown in figure 3 for the case in which the shock is entering a
region in which both * and M either increase or decrease .

(d)/dM >”O). The curve sing = l/M is again an integral curve of
“equation (30), since the last term in this equation is zero when ¢ is




14 NACA TN 2725

W
___M
\ AN
\ N\

i A ad M [—>
(a) Increasing an (dM

v

N

2527

(c) Decreasing A\, increasing M (d) Increasing N\ decreasing M

B9 -9

Sketch 5. - Types of interaction of shock waves with Praﬁdti—Meyer
flow regions. L

the Mach angle. Comparison of figures 1 and 3 shows that for most
values of M and ¢ the shock angle increases less rapidly with
decreasing Mach number for Prandtl-Meyer flow than for shear flow.

Integral curves of figure 3 are plotted in figure 4, together
with several constant-pressure-ratio curves. It is seen that the
assumption that pressure ratio across the shock remains constant in
passing through the nonuniform region is even less valid for this case
than for shear flow. TFor fairly weak shocks (A'-X < 10°), however,
it is found that the integral curves follow quite closely curves of
constant-flow deflection (constant f»). The integral curves for ‘ ;

shear flow, on the other hand, followed curves of constant-pressure
ratio more closely than curves of constant-flow deflection. For very
weak waves, the two types of curves become indistinguishable.
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The curve fS(M,w) = - (tan @)/M separates the region in which

‘pressure ratid decreases with decreasing Mach number from the region

in which pressure ratio increases as Mach number is reduced. This
curve again intersects the Mach angle curve at M= 1/5.

Strength Distribution for Weak Waves
» .

As mentioned previously, an analysis of the interaction of weak
waves with a supersonic shear flow was developed in reference 2. In
this analysis, the assumptions were made (as in the preceding analysis
of shock interaction) that the flow upstream of the wave was uninflu-
enced by the presence of the wave and that this upstream flow could
be divided into elementary stream tubes. An additional assumption
was made that the Mach number in each stream tube was unchanged in
passing through the wave. In the present section the interaction of

. a weak wave with more general nonuniform supersonic regions is consid-

ered, and the assumption that the Mach number remains constant in each
stream tube 1s omitted. ‘

A weak wave is herein defined as one across which pressure ratio
and flow deflection are related by equation (1): When the upstream
: flow variables are specified, .the
local downstream flow variables:

Incident ' //,_k // are determined by means of a five-
weak wave y / sector configuration (sketch 6)
» > in which, since Pz = Py, the '
/ ) %//; / pressures are related by

» '
, / 4 : . . ’
//> / 5\ P32 _Dals (31)

J/ Use of equation (1) for the pres-
: sure ratios of equation (31)
Sketch 6 results in
11Mp? 1M ® 5| vsMs”

1 (g A (- a| (hy - s)

2.1 M2 - 1 5_1.1- 2 _1

(32)

As for the shock wave, an average value of 7t instead of the upstream
value can be used for each wave with slight additional complication.
In this manner the variation of y with temperature can be taken into
account as the computation proceeds. '
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Since all changes across the waves and across the streamlines are
small, let

Pg = p; +dpy = p+dp

vy M) = £(vy,Mp) + 8f(v1sMp) = £ + BF
f(T5:M5) = f(Yl:Ml) + df(Tl:Ml) = f+df
where
| (v>M) s
£(r,M) =~
M -1
Equation (32) can then be written (since Ay = Ag)

E+(f+5f)(x4—x5+\5—11+.kl-"z):||:1-f("z-"l)]~(l+g§) [l° (ffdf)(M-)‘s)] (33)

Let dh=Ag - Aj and let 6 be the change in flow angle across the

weak wave; then

dé

It
-~y
o
1

>J
o
g
1
>
oo
]
e
S

e+de=)\4-k5

Equation (33) now becomes

[1+ (f+‘5f_)(6+‘d9+d)»- 9)][1 - fe] = (1+£1§) [1 - (£ +af)(e + dG)]

which, when rearranged, becomes

as of\ ©df 4f il
‘fde[-z+§§(l+—i':)-f9 (1+?)+?+?]-_edf+-;1’-(1-ef-edf)-dx(l-ef)(f+5f)

Neglect of all terms of higher order than the first yields

£ ao(2 - 6f) = - 6 af + (%E - f dx)(l - of) (34)

2527
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&

Calculations show that f 1is less than 10.1 for 1.01 < M < 5.0.
Consequently, in this range of Mach numbers, if 6 is of the order
of lo, then Of can be considered negligible compared with unity and
equation (34) becomes : '

gg:—d—f--i-—-}—'-@--fd)\) (35)
N 6 2f  20f \p . :
% For the case of shear flow (dp = 0, dy = 0, d\ = 0), equation (35)
~ reduces to ‘ :
2 2
ae ..M -2 a ‘ (36)
0 a(M2 - 1) M2
which is the result derived by a different process in reference 2 with
the assumption that Mach number is constant in each stream tube. As
pointed out in reference 2, it is readily shown from equation (36) that
a weak incident wave entering a region of decreasing Mach number pro-
duces a reflected wave of the same sense (compression or expansion) or
opposite sense depending on whether M is less than or greater than
- 1/5. Integration of equation (36) yields, as in reference 2,
- o Mo (w2 VW : (37)

- where subscript zero refers to any initial or speeified values. The

function (M2 - l)l 4/M is plotted in figure 5. For shear regions
with large changes in Mach number, it is evident that the cumulative
effect of the reflected waves, which accounts for the change in 6 in

~ the interaction process, is negligible only if the initial weak wave
is itself negligible.

vFor problems in which dp/p or A\ are of the same order as
6 df, equation (35) must be used instead of equation (37). If the flow
upstream of the weak wave is of the Prandtl-Meyer type, equation (35)
becomes, by use of equations (27) and (29),
2 ‘ ' | .
ae M~ - 2 ™ (1 +1) (38)
aM = T oam(Me - 1) (1 + I_%_l Mz) 20

+
6

where the plus sign corresponds to d\/aM > 0 (see sketches 5(a)
- and 5(b)). Since an incident weak wave is everywhere inclined at the
. local Mach angle, interactions of the type shown in sketches 5(c)
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and 5(d) do not occur in this case (d6 = O because dM = 0). For
the physically significant case (dA/dM >0) equation (38) can be
written

2 _ 2 _
M 2 + M 1

(38a)
2M(M% - 1) oM (1 + L= L MZ)

o® |+
218
]

This equation is easily integrated numerically for any prescribed 60

and MO'
DISCUSSION AND APPLICATION

Construction of downstream flow by stepwise process. - When the
form of & shock wave in a nonuniform region has been determined by
equation (18) or its corollaries, and when the resulting downstream
flow is completely supersonic, the method of characteristics for anisen-
tropic flow can be used to complete the computation of the downstream
flow field. This method, however, is quite tedious numerically; and it
may be desirable, in cases where great accuracy is not required, to
establish the essential features of the downstream flow by a simple
method. The weak-wave procedure to be described constitutes such a
simplification. '

Before discussing the computation procedure, it is necessary to
establish and define the order of magnitude of the various waves
encountered. For this purpose, the interaction process shown in sketch 7
js considered, wherein a shock wave is shown entering a nonuniform
region from the upper left. The flow upstream of the shock may be
continuous or it may contain discontinuities sufficiently small so that
the criterion for neglect of all except the primary reflected waves for
computing the shock form is satisfied. This criterion was discussed in
the section General Equations. After the shock form is determined, the
upstream flow field can be divided into a sequence of streamtubes in each
of which all fluid quantities can be assumed to be constant. This sub-
division is required for stepwise computation of the downstream flow
field even if the upstream flow is continuous. The subdivision produces
a wave pattern of the type shown in sketch 7.

2527
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First-order waves

L2S2

Second-order waves

Sketch 7

‘The shock wave can be considered to be a zero-order wave which, in
passing through the nonuniform region, produces a sequence of reflected
first-order waves. The integrated effect of the first-order waves on
the strength of the shock. wave can be of the same order of magnitude as
the initial strength of the shock. A zerc-order solution to the inter-
- action problem must therefore retain the integrated effect of first-
order waves. Similarly, each of the reflected first-order waves, whose
initial strength is known from conditions just downstream of the shock
wave, can be considered to be a primary weak wave passing through a
region of nonuniform flow. Each first-order wave produces a sequence
of second-order reflected waves, whose integrated effect on the strength
of the first-order waves can be of the first order. To compute accu-
rately the strength of the first-order waves as they emerge from the
nonuniform flow field, it is therefore necessary to use equation (35)
for each first-order wave (since p, A\, and M are all variable
upstream of these waves). The use of equation (35) to compute the
strength of each first-order wave yields an approximate solution for
conditions upstream of the next first-order wave. With these conditions,
the strength distribution of each succeeding first-order wave can be
computed.
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Sketch 8 shows the precise manner in which the second-order waves
are taken into account by this pro-
cedure. Conditions upstream of first-

Y b order reflected waves ab and fd

/ are known from the shock form. The

Y, / / strength of the secondary reflected

wave bc 1s obtained from equa-

/ / tion (35), which gives the change

in flow deflection of wave abb'

at b. The strength of wave Dec,

in turn, determines conditions

upstream of segment de, from which

the strength of segments de and dg

can be calculated by equation (35).

By continuation of this procedure,

the entire supersonic portion of the

dovnstream flow field can be con-

structed. The only approximation
Sketch 8 made is that waves such as bc do

not significantly affect the average
flow variables upstream of primary wave segments such as fd; in other

words, that the ratio = is close to unity. Since this ratio is

a
very close to unity when all waves are inelined at the local Mach angle,
the maximum error that can result from violations of this condition is
equivalent to the error that could result from neglect of a single
sequence of second-order waves (those nearest the shock wave), which,
in turn, is approximately equivalent to the effect of a single first-
order wave. In general, therefore, the use of equation (18) and its
corollaries for shock waves and the use of equation (35) and its corol-
laries for first-order waves will yield an accurate first-order solution

to the interaction problem.

In many problems, the foregoing procedure may yield higher accuracy
than is required; and it may be desirable, for the sake of simplicity,
to ignore second-order waves entirely. 1In such a case, the pressure
ratio or flow deflection across each first-order wave is considered
constant until it intersects another first-order wave or a shock wave.
The neglect of second-order waves is permissible, if only a few such
waves are generated. Thus, in sketch 7, the first three or four first-
order waves generate only a few second-order waves before they emerge
from the nonuniform region. 1In general, if the upstream Mach number
varies over a small range, so that only a few streamsheets are required
to break the flow into sufficiently small differences, then the neglect
of second-order waves will result in negligible error.

Effect of incident first-order waves. - If first-order waves other
then those arising from the passage of a shock wave through the nonuniform
region are present, then the computation of the downstream flow field by

2527
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the wave method is feasible only if second-order waves are entirely
neglected. Even with this approximation, however, the precise construc-
* tion of the flow is rather laborious because the intersections of waves
with waves, and waves with streamlines occur at different positions.
The situation locally is as shown in sketch 9, where a, b, and c may
be first-order waves such as those shown in ‘sketch 3(a); d, e, and f
‘may be first-order reflected waves due to the passage of a shock wavej
b c and g and h are stream-
\\ /// lines. The simplest computa-
\K// . //// tion procedure consists in
assuming that stagnation
\\ \\'k / \ //// pressure and stagnation
\(/ temperatures are constant
in grids such as kan
(rather than between stream-
lines). If the width of
" each grid is of the same
order as the initially
agssumed streamtube width,
then no appreciable error is
introduced by this procedure.
The streamlines can be
ignored except insofar as
they indicate the approximate
local stagnation pressure
and temperature, and each
computation of properties in
successive grid spaces is
merely an application of the weak-wave relation (equation (1)) to the
problem of interaction of two weak waves. Thus, if conditions in grid
spaces 1, 2, and 4 are known from previous computations, conditions in
reglon 3 are obtained from the relation

1252

oy
v

e

it 4

Sketch 9

= ===k (39)
or, with the usé of equation (l)‘fof these pressure ratios,
i - el 00s - );4)] [i + 2000 - M) = 0+ £00) 05 - 2] 3 - £00) (g - x1))
which, when solved for Xz, yields

X_fmgya-fmﬂathﬂ+fm@Mg+fmﬁ@4-MU+fmg&,xl+h-xﬂ‘
“‘ 5 £0) [+ 20n0)(y - M)+ £00) [1- £00)0p - X))

(40)
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Since all waves are considered to be weak, let
£(Mp) = £(M;) + Bf

£(M,) = £(¢;) + af

If the steps are sufficiently small so that f(M)AX is small compared
with unity, then neglect of all except the lowest order terms in equa-
tion (40) yields

Az =g =hy =g (41)

or

Ay =Ny =Ry - Ay

which shows that the assumption commonly made for isentropic flow,
namely, that the flow deflection remains constant across each first-
order wave in interactions with other first-order waves, is also appli-
cable when continuous or stepwise small variations in entropy and energy
occur.

With Pz and 7tz taken equal to Py and 7yy, respectively,
3 3 1 1

equations (41) permit calculation of pressure and Mach number in

region 3. The accuracy of this procedure depends on the negligibility
of second-order reflections at the differential entropy and energy
interfaces which, in turn, depends on the number of stream tubes required
to divide the upstream flow into sufficiently small differences. If the
upstream Mach number varies over a very wide range, use of the method

of characteristics for anisentropic flow may be required in place of

the first-order wave procedure if a high degree of accuracy is required
downstream of the shock wave.

Interaction of incident first-order waves with shock wave. - When
first-order waves other than reflected waves due to passage of the shock
are present, it is likely that some of these waves will intersect the
shock wave in the region of nonuniform flow. This possibility was
pointed out in the first section of the ANALYSIS, and discussion was
postponed because the analysis neglecting the waves was valid if such
intersections were few and for segments of the shock between such inter-
sections. The local modification of shock strength required at these
intersection points is derived with the aid of sketch 10, in which an
incident wave of type Og is assumed to intersect the shock wave

-25217
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‘between two successive reflected
waves due to upstream flow vari-
ations. At the intersection
point, an additional reflected
wave Of .can arise which is

due only to the interaction of
Og with the shock wave and not
to variation in the upstream /
flow. The strength of Og at
the intersection point is con-
sidered known from computations
of its interactions with all
first-order waves in its path.
Although a solution for the
strength of the wave Of -result-
ing from the interaction with
the shock wave can be obtained
from equation (11), the procedure

- L2gz

adequate for most purposes to
, ‘Sketeh 10 neglect the reflected wave Of
. . ‘ entirely. The assumption that
‘ no reflected wave of type OF
occurs at the intersection is the same assumption that is made with good
. ‘ accuracy in the shock-expansion theory for two-dimensional airfoils.
‘The conditions for which the Of wave is negligible compared with the
incident wave are fully discussed in reference 6. Specifically, the
assumption is that in sketech 10 Xz = XS and pp = pz, where Pz and

kg are known from the preceding step in which the formula for the

intersection of two weak waves was used. The change in pressure ratio -
 across the shock at point O transfers the shock to another integral
curve of equation (18) (or fig. 2 or 4), which it follows until another
- intersection of this type occurs. The entire shock form is therefore
determined to first order by its own propagation process and by first-
order waves from external sources that intersect it.

The accuracy with which the flow field can be calculated by neg-
lecting all except first-order waves and the initial shock wave depends
on the strength of the second-order waves that are neglected. An
estimate of the error can be made by determining the strength of the
second-order waves that are produced by the strongest first-order wave
in the flow field. The errors in the computed pressures and flow angles
should be comparable with the changes in pressure and flow angle across

© these neglected waves.

£

is rather laborious, and it seems
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EXAMPLE

As an example of shock propagation through supersonic shear regions,
the form of a shock wave in a constant-pressure wake-type profile was
computed. The profile assumed is shown in figure 6, together with the
shock form traced with the aid of figure 2. The initial shock angle
and Mach number were assumed to be 34.0° and 3.0, respectively. The
streamlines and first-order reflected waves were computed under the
assumption that second-order waves were negligible and that consequently
the flow deflection and pressure ratio across each first-order reflected
wave remain constant.

The minimum Mach number in the wake was taken to be 1.795, which
yields a region of subsonic flow downstream of the shock, but does not
exceed the criterion for simple propagation. The region of subsonic
flow was desired to illustrate an approximate procedure for handling
such regions when they are imbedded in a supersonic stream. The pro-
cedure used was as follows: In the region of subsonic flow, the wave-
type calculation, of course, is not valid; but it was assumed that the
pressure difference and flow deflection across each first-order wave
was impressed on the imbedded subsonic region and that these pressure
differences propagate through the subsonic region normal to the flow
direction and emerge at the opposite sonic line in the form of waves
with the same strength as the incident waves. This process appears
reasonable if the extension of the shock through the region @ > P by
means of the constant-pressure criterion is approximately valid. In
that case, the shock form determines the first-order wave pattern which,
in turn, determines the streamwise pressure gradient in the supersonic
streamlines adjacent to the subsonic streamlines. The assumption that
this pressure gradient is transmitted normally through the subsonic
region is consistent with the expectation that curvature of the subsonic
streamlines will be small if the curvature of the adjacent supersonic
streamlines is small.

With the assumption that no separation takes place downstream of
the shock and that pressure is transmitted normally through the subsonic
portion of the downstream shear layer, the interaction process is easily
constructed in terms of the local Mach angles and flow angles. The
resulting pattern of streamlines and first-order reflected waves is
shown in figure 6 for the example chosen. The flow angle Jjust downstream
of the shock varied from 16.7° at the point of incidence to 19.2° near
the center line. The pressure ratio across the shock varied from 3.12
at the point of incidence to 2.72 near the center line. Since the
static pressure and flow angle are constant between any two reflected
first-order waves (due to neglect of second-order waves), these figures
represent the range of variation for the entire interaction region.

2527
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Although these variations in flow angie and pressure ratio are
appreciable relative to the initial flow deflection and pressure ratio
{about 15 and 13 percent, respectively), they are nevertheless fairly
small and may be negligible for some purposes. The resulting variations
in Mach number are indicated on figure 6. In the stream outside the
shear layer the variatior is only about 4 percent of the initial down-
stream Mach number. These ranges of variation can, of course, be pre-
dicted as soon as the form of the shock is known. The location of the

variations, however, must be determined by constructing the first-order
- wave pattern. ' '

- The self-consistency of the method used to trace changes in pres-
sure and flow angle through the subsonic streamtubes can be checked to
some extent by comparing the change in streamtube area required by one-
dimensional equations with the change actually obtained. .In the present
case, the change in Mach number from 0.90 to 0.80 along the central
streamtubes requires an area change of only about 3 percent, which is
self-consistent with the area changes actually obtained within the error

“in tracing the streamlines.

CONCLUDING REMARKS

Ansalysis of the propagation of shock waves and first-order waves

- through nonuniform regions of supersonic flow showed that the strength

distribution of an incident wave in such regions is determined by the

upstream distribution of Mach number, flow angle, pressure, and specific-

heats ratio provided that no waves other than the incident wave and
reflected waves generated by its propagation are present. If the
upstream flow can be divided into a sequence of small discontinuities,
each incident wave can be considered to produce a sequence of reflected
waves whose strength is an order of magnitude less than that of the
primary wave. The integrated effect of these reflected waves, however,
may be of the same order of magnitude as the strength of the primary
wave.

When the primary wave is a shock wave, a minimum upstream Mach
number is found below which no physically realistic solution can be
obtained with the equations for simple propagation. A sufficient. con-
dition is thereby obtained for the avoidance of flow separation,
reversed flow, or other nonsimple phenomena.

When first-order waves other than those reflected within the non-
uniform region due to passage of a shock wave occur downstream of the
shock, a first-order solution to the interaction problem is obtained
" by neglecting all second-order reflected waves. The accuracy of this
procedure depends on the magnitude of the variations in fluid properties -
upstream of the shock and becomes less accurate when these variations
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are large. If a high degree of accuracy is required, the flow down-
stream of the shock can be constructed by the method of characteristics
for anisentropic supersonic flow.

Although the wave analysis used becomes invalid when a portion of
the flow downstream of the shock wave becomes subsonic, approximate
procedures are given for computing the downstream flow field, as well
as the shock form, when the curvature of the streamlines in the down-
stream flow field is small.

2527
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APPENDIX - SYMBOLS
. The following symbols are used in this report:

, 2
f (M) Y) ' """—;M =
M" -

£1(M,7,9) pressure ratio across shock, p'/p (equation (Z))

£o(M,7,¢) flow deflection scross shock, (A' - \) (equation (3))

YM'Z

M2 -

fé(M,Y,¢) d9/dM for shear flow (equation (25))

L2ge

£z(M,7,9) (equation (4))

f=(M,v,9) de/aM for Prandtl-Meyer flow (equation (30))

M Mach number
P " stagnation pressure
. P ‘ static pressure
T  ratio of specific heats
k e - flow deflecﬁioﬁ across shock or weak wave (A' -L) (posi-

tive value for compression, negative value for expansion)

A flow angle relative to reference direction (positive sense
: indicated where needed)

(i shock angle relative té local upstream flow direction
P value of ¢ for M' = 1.0

For XA, p, and M unprimed values represent conditions upstream
of shock or weak wave and primed values refer to conditions downstream
of shock or weak wave. '

i

Number subscripts for A\, @, p, ¥, M refer to values in cor-
responding regions in accompanying sketches.
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